LINEAR ALGEBRA FINAL EXAM

This exam is of $\mathbf{5 0}$ marks and is $\mathbf{3}$ hours long - from 10 am to 1 pm . Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly.

1. Let A be an $n \times n$ diagonal matrix with characteristic polynomial

$$
p_{A}(x)=\prod\left(x-\lambda_{i}\right)^{d_{i}}
$$

where the λ_{i} are distinct. Let V be the set of matrices B such that

$$
\begin{equation*}
A B=B A \tag{3}
\end{equation*}
$$

- Show that V is a vector space
- What is $\operatorname{dim}(\mathrm{V})$?

2. Let V be the vector space $C^{0}([-1,1], \mathbb{R})$ of continuous real valued functions on $[-1,1]$. Let W_{e} be the subspace of even functions - that is, $f(-x)=f(x)$ and W_{o} be the subspace of odd functions $f(-x)=-f(x)$.

- Show that $V=W_{o} \oplus W_{e}$
- If T is the operator

$$
\begin{equation*}
T(f)(x)=\int_{0}^{x} f(t) d t \tag{4}
\end{equation*}
$$

then are W_{o} and W_{e} invariant under T ? Justify your answer.
3. Let $V=\mathcal{M}_{n}(\mathbb{C})$. Let $A \in V$.

Define a linear operator

$$
\begin{equation*}
T_{A}(B)=A B-B A \tag{5}
\end{equation*}
$$

- Show that if A is a nilpotent matrix then T_{A} is a nilpotent operator.

Define

$$
\begin{equation*}
f_{A}(B)=\operatorname{Trace}\left(A^{t} B\right) \tag{3}
\end{equation*}
$$

- Show that f_{A} is linear functional on V.
- Show that every linear functional on V is given in this way.

Define a linear operator $M_{A}: V \rightarrow V$ by

$$
M_{A}(B)=A B A^{*}
$$

where $A^{*}=\bar{A}^{t}$, the transpose conjugate.

- Show that

$$
\begin{equation*}
\operatorname{det}\left(M_{A}\right)=|\operatorname{det}(A)|^{2 n} \tag{5}
\end{equation*}
$$

4. Let T be a linear operator on \mathbb{R}^{3} represented by the matrix

$$
A=\left(\begin{array}{ccc}
3 & -4 & -4 \tag{5}\\
-1 & 3 & 2 \\
2 & -4 & -3
\end{array}\right)
$$

- Find vectors $\alpha_{1}, \ldots, \alpha_{r}$ such that

$$
\begin{equation*}
\mathbb{R}^{3}=Z\left(\alpha_{1}, T\right) \oplus \cdots \oplus Z\left(\alpha_{r}, T\right) \tag{5}
\end{equation*}
$$

- Find the rational form of T.
- Compute the minimal polynomial of T
- Compute the characteristic polynomial of T.
- Is T triangulable?
- Is T diagonalisible?

